QSMP Solder-Down System-on-Module
STM32MP1 Series®-A55 |
|
256/512MB DDR3L, 4GB eMMC or 128MB SLC NAND |
|
-25°C to 85°C (eMMC) / -40°C to 85°C (NAND) |
|
27 x 27 x 2.3 mm |
|
Datasheet |
The QSMP is a QFN Style Solder-Down Computer On Module. The module with a small square size of 27mm and a height of 2.3mm is single-sided assembled. Its QFN type lead style has a 1mm pitch with 100 pads. The ground pad additionally acts as thermal pad.
QS-Standard
Benefit by using QS module family
The QS module family has very compact dimensions. They include a complete embedded System on Module with processor, PMIC, RAM and flash memory.
Because of the very dense packaging on the top side, there are no components on the bottom side of the module, cut-outs on the base board not required. The pin compatible family concept provides all important interfaces needed for embedded designs, e.g., USB, Gigabit-Ethernet, display and many serial interfaces.
Flexibility, high performance and easy integration
All signal connections located at the module edges, allowing easy optical inspection during production. The modules can be assembled by automatic pick & place machines without any mechanical assembly work necessary.
The pin-optimized QS concept enables the use of a simple, cost-effective 2-layer base board.
A development kit with schematics and bill of materials is available to support a quick evaluation and project start.
QSX vs. QS
- QSX is a QS module enlarged by 1 mm all around.
- The size hereby increased from 27 mm square to 29 mm square.
- In each corner this gives additional space for a total of 8 further pads which are used for PCIe and USB3.
- The inner 27 mm x 27 mm QS area remains identical, providing full compatibility.
-
STM32MP1 Series Processors
Multicore STM32MP1 architecture is ideal for Open Source Linux based applications with real-time and power constrained subsystems
-
QSMP module running Electron framework
-
QSMP at a glance
- Main CPU
2x Cortex-A7, 650MHz
- MCU
Cortex-M4 209MHz - Memory
512MB DDR3L
4GB eMMC- Security
Secure boot, TrustZone® peripherals, active tamper, Cortex®-M4 resources isolation - Display
24-Bit RGB
- Expansion I/O
2x USB with PHY
- Network/Storage
10/100 Ethernet
SD/eMMC- IO
4x UART, 4x I2C,
3x SPI, 4x PWM, SAI -
Processor features
STM32MP1 microprocessor
with dual Arm® Cortex®-A7
and Cortex®-M4 Cores.A general-purpose microprocessor portfolio enabling easy development for a broad range of applications, the STM32MP1 series is based on a heterogeneous single or dual Arm Cortex-A7 and Cortex-M4 cores architecture, strengthening its ability to support multiple and flexible applications, achieving the best performance and power figures at any time. The Cortex-A7 core provides access to open-source operating systems (Linux/Android) while the Cortex-M4 core leverages the STM32 MCU ecosystem.
-
Solder-down SoM
Solder-Down
System-on-Module
Simplifies Design & Production
A SoM, one step above an SoC, incorporates connectivity, multimedia and display, GPIO, operating system, and others in a single module. Although the industry has been traditionally using SODIMM modules (such as push-connector modules, small outline dual in-line memory module), soldered SoM modules are rapidly gaining ground. Solder modules are less expensive than their SODIMM counterparts because they are easier to manage, test in production, and allow for better economies of scale.
SoM-based designs are usually scalable to achieve a fully customized electronics assembly in terms of interfaces and form factors. SoMs can be replaced or upgraded within a carrier board. Some advantages of the SoM approach over an SoC development include cost savings, reduced market risk, reduced customer design requirements, and footprint. The only limitation with an SoM, when compared to the ground-up SoC design, is that there are fewer pins in an SoM.
-
Solder modules can be used just like any other component
Hardware and software integration of the newest 64-bit ARM-processor is becoming increasingly more sophisticated. Integrating everything on a single board can create some engineering challenges. Once a fully custom SoC-based board is built, it can’t be modified without delay and expense. That’s why it’s vital to know what its destination is before you design it. Despite this precaution, porting Linux or another OS to the custom hardware is an onerous task. To overcome this limitation, a SoM offers much more flexibility as the porting is already done. To further reduce costs, most projects are turning to module-based systems to increase time available for application development, reduce complexity and allow designers to focus on their core competencies.
Solder modules can be used just like any other component, and do not need to be handled and inserted manually like a SODIMM. With increasing demands on miniaturization, a SODIMM module requires more space and this can be important. The smallest soldered modules are only 27mm2 (1.1″) and this is the smallest space on which it is physically possible to mount the basic components.
In all types of designs, the connector has its cost. Even a SODIMM200 connector can cost a couple of dollars and push-fit connectors can cost a lot more. Soldering offers considerable strength and therefore the components are less vulnerable to shock and vibration.
The solder-down module’s integral ground plane provides a defined return path, avoiding ground loops and allowing efficient routing of tracks with low EMI. High-speed differential signals can be easily routed on a single layer. The ground plane also aids heat transmission to the baseboard, reducing the need for heat sinks.
In projects with BGA solutions, designers might face various problems. BGAs are very good for density, but they need high precision and it can only be inspected by through x-ray. SoMs in contact with the edges prove to be a better solution as it is possible to visually inspect the connections.
Pre-programmed
All modules will be shipped with a pre-programmed bootloader by default. To speed up the production process, the modules can also be pre-programmed to customer specifications. JEDEC version 5.0 introduces “Production State Awareness” to help avoid possible data corruption during soldering. Only a predefined part of the whole device’s available space can be supported by this feature.
Development Kits
Variants
-
An overview of the current standard variants.
Customized versions on request.
-
Part Number QSMP-1570 QSMP-1530C QSMP-1510 Part Name QSMP/157C/512S/4GF/E85 QSMP/157C/256S/4GF/E85 QSMP/151A/256S/128F/I Processor STM32MP157C STM32MP157C STM32MP151A SDRAM 512 MiB 256 MiB 256 MiB Flash 4 GB eMMC 4 GB eMMC 128 MB SLC NAND Display-IF 24-bit RGB + 2-lane MIPI-DSI 24-bit RGB + 2-lane MIPI-DSI 24-bit RGB Temperature -25 °C to 85 °C -25 °C to 85 °C -40 °C to 85 °C
Product comparison
TX | QS | Silicon Vendor | SOC | Core | # | Clock | Grade | L2-Cache | I-Cache | D-Cache | Emb. SRAM | NEON | VFP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TX93 | QS93 | NXP | i.MX 93 |
Cortex®-A55 Cortex®-M33 |
2 1 |
1.5 GHz |
Ind. | 64 KB | 32 KB | 32 KB | 640 KB | √ | √ |
TXRZ | QSRZ | RENESAS | RZ/G2L |
Cortex®-A55 Cortex®-M33 |
2 1 |
1.2 GHz 200 MHz |
Ind. | 256 KB (L3) | 32 KB | 32 KB | 128 KB | √ | √ |
TX8P | QSXP | NXP | i.MX8M Plus | Cortex®-A53 | 4 | 1.6 GHz | Ind. | 512 KB | 32 KB | 32 KB | 256 KB | √ | √ |
TX8M | QS8M | QSXM | NXP | i.MX8M Mini |
Cortex®-A53 Cortex®-M7 |
4 1 |
1.6 GHz 750 MHz |
Ind. | 512 KB | 32 KB | 32 KB | 256 KB | √ | √ |
TX8M | QS8M | NXP | i.MX8M Nano | Cortex®-A53 | 2 | 1.4 GHz | Ind. | 512 KB | 32 KB | 32 KB | 256 KB | √ | √ |
TX6QP | NXP | i.MX6QuadPlus | Cortex®-A9 | 4 | 800 MHz | Ind. | 1 MB | 32 KB | 32 KB | 256 KB | √ | - | |
TX6Q | NXP | i.MX6Quad | Cortex®-A9 | 4 | 1 GHz | Com. | 1 MB | 32 KB | 32 KB | 256 KB | √ | - | |
TX6DL | NXP | i.MX6DualLite | Cortex®-A9 | 2 | 800 MHz | Ind. | 512 KB | 32 KB | 32 KB | 128 KB | √ | - | |
TX6S | NXP | i.MX6Solo | Cortex®-A9 | 1 | 800 MHz | Ind. | 512 KB | 32 KB | 32 KB | 128 KB | √ | - | |
TX6UL | NXP | i.MX6UltraLite | Cortex®-A7 | 1 | 528 MHz | Ind. | 128 KB | 32 KB | 32 KB | 128 KB | √ | - | |
TXMP | QSMP | STMicroelectronics | STM32MP1 |
Cortex®-A7 Cortex®-M4 |
1-2 1 |
650 MHz 209 MHz |
Ind. | 256 KB | 32 KB | 32 KB | 708 KB | √ | √ |
TX | QS | NPU | ISP | Graphics Acceleration | Video Codec | Camera Interface | LCD Interface |
---|---|---|---|---|---|---|---|
TX93 | QS93 | √ | - | √ (Blending/Composition, Resize, Color Space Conversion) | - | √ | LVDS |
TXRZ | QSRZ | - | - | √ | √ | √ (TXRZ) / - (QSRZ) | 24bit and MIPI |
TX8P | √ | √ | √ | √ | √ | LVDS + MIPI + HDMI | |
QSXP | √ | √ | √ | √ | √ | MIPI | |
TX8M | QS8M | QSXM | - | - | √ | √ (8M Mini) / - (8M Nano) | √ | MIPI |
TX8M | - | - | √ | √ | √ | LVDS | |
TX6 | - | - | √ | √ | √ | 24bit or LVDS | |
TXUL | - | - | - | - | √ | 24bit | |
QSMP | - | - | - | - | √ | 24bit | |
TXMP | QSMP | - | - | √ | - | √ | 24bit and MIPI |
TX | QS | RAM Size | RAM Type | RAM width | ROM Size | ROM Type |
---|---|---|---|---|---|---|
TX93 | QS93 | 1 GB | LPDDR4 | 16 bit | 4 GB | eMMC |
TXRZ | QSRZ | 512MB / 1 GB | DDR3L-1333 | 16 bit | 4 GB | eMMC |
TX8P | QSXP | 2 GB | LPDDR4 | 32 bit | 8 GB | eMMC |
QSXM | 2 GB | LPDDR4 | 32 bit | 4 GB | eMMC | |
TX8M - MINI | 1 GB / 2 GB | DDR3-1600 | 32 bit | 4 GB | eMMC | |
TX8M - NANO | 512 MB | DDR3-1600 | 16 bit | 4 GB | eMMC | |
QS8M | 512MB / 1 GB | DDR3-1600 | 16 bit | 4 GB | eMMC | |
TX6QP | 2 GB | DDR3-1066 | 64 bit | 4 GB | eMMC | |
TX6Q | 1 GB | DDR3-1066 | 64 bit | 128 MB / 8 GB | SLC NAND / eMMC | |
TX6DL | 1 GB | DDR3-800 | 64 bit | 128 MB / 4 GB | SLC NAND / eMMC | |
TX6S | 256 MB / 512 MB | DDR3-800 | 16 bit / 32 bit | 128 MB / 4 GB | SLC NAND / eMMC | |
TX6UL | 256 MB | DDR3-800 | 16 bit | 128 MB / 4 GB | SLC NAND / eMMC | |
TXMP | QSMP | 256 MB / 512 MB | DDR3-1066 | 16 bit | 128 MB / 4 GB | SLC NAND / eMMC |
USB | Ethernet | UART | I2C | SPI | SD / MMC | Serial Audio | CAN | SATA | External Memory Interface | |
---|---|---|---|---|---|---|---|---|---|---|
TX93 | 2 | 2 | 8 | √ | √ | 1 | 2 | 2 | - | - |
QS93 | 2 | 2 | 5 | √ | √ | 1 | 1 | 2 | - | - |
TXRZ | 2 | 2 | 7 | √ | √ | 1 | 2 | 2 | - | - |
QSRZ | 2 | 1 | 4 | √ | √ | 1 | 1 | 2 | - | - |
TX8P | 2 | 2 | 4 | √ | √ | 2 | 4 | 2 | - | PCIe |
TX8M | 2 / 1 | 1 | 4 | √ | √ | 2 | 4 | - | - | PCIe |
QS8M | 2 / 1 | 1 | 4 | √ | √ | 1 | 1 | - | - | - |
QSXM | 2 | 1 | 4 | √ | √ | 1 | 1 | - | - | PCIe |
QSXP | 2 | 1 | 4 | √ | √ | 1 | 1 | 2 | - | PCIe |
TX6QP | 2 | 1 | 5 | √ | √ | 2 | 2 | 2 | √ | 16 bit / PCIe |
TX6Q | 2 | 1 | 5 | √ | √ | 2 | 2 | 2 | √ | 16 bit / PCIe |
TX6DL | 2 | 1 | 5 | √ | √ | 2 | 2 | 2 | - | 16 bit / PCIe |
TX6S | 2 | 1 | 5 | √ | √ | 2 | 2 | 2 | - | 16 bit / PCIe |
TX6UL | 2 | 2 | 8 | √ | √ | 2 | 1 | 2 | - | - |
TXMP | 2 | 1 | 8 | √ | √ | 1 | 1 | 2 | - | - |
QSMP | 2 | 1 | 7 | √ | √ | 1 | 1 | 2 | - | - |
Supply Voltage | U-Boot [mW] | Linux [mW] | Sleep [mW] | |
---|---|---|---|---|
TX93-5210 | 5V / 3.3V | 1110 / 1025 | 725 / 655 | 150 / 125 |
QSRZ-G2L0 | 3.3V | 782 | 657 | 500 [1] |
TXRZ-G2L0 | 5V / 3.3V | 1040 / 941 | 960/ 871 | 985 / 900 [1] |
TX8P-ML81 | 5V / 3.3V | 1900 / 1800 | 1685/ 1600 | 115 / 100 |
TX8M-1610 | 5V / 3.3V | 1110 / 1110 | 900 / 880 | 130 / 120 |
TX8M-1620 | 5V / 3.3V | 1275 / 1277 | 1055 / 1059 | 260 / 244 |
TX8M-ND00 | 5V / 3.3V | 860 / 845 | 670 / 650 | 85 / 80 |
TX6Q-8037 | 5V | 2400 | 850 | 180 |
TX6Q-1030 | 5V / 3.3V | 2125 / 2015 | 800 / 760 | 80 / 80 |
TX6U-8033 | 5V / 3.3V | 1925 / 1840 | 800 / 760 | 80 / 80 |
TX6S-8034 | 5V / 3.3V | 1425 / 1310 | 550 / 530 | 80 / 80 |
TXUL-5010 | 5V / 3.3V | 710 / 620 | 550 / 460 | 29 / 28 |
TXUL-5011 | 5V / 3.3V | 760 / 650 | 550 / 460 | 29 / 22 |
TXUL-8013 | 5V / 3.3V | 775 / 675 | 365 / 340 | 100 / 76 |
TXMP-1570 | 5V / 3.3V | 875 / 775 | 800 / 695 | 60 / 45 |
QSMP-1570 | 3.3V | 660 | 560 | 20 |
QSMP-1530 | 3.3V | 620 | 520 | 15 |
QS8M-MQ00 | 3.3V | 840 | 510 | 60 |
QS8M-ND00 | 3.3V | 670 | 500 | 45 |
QSXM-MM60 | 3.3V | 1161 | 739 | 40 |
QSXP-ML81 | 3.3V | 1520 | 1230 | 86 |
[1] Renesas RZ/G2L has no different power domains, voltages cannot be switched off and DRAM self-refresh is not supported.
glmark2 score | CoreMark | DhryStone |
Whetstone [MIPS] |
Memcpy [MB/s] |
Memset [MB/s] |
STREAM copy [MB/s] |
STREAM scale [MB/s] |
STREAM add [MB/s] |
STREAM triad [MB/s] |
|
---|---|---|---|---|---|---|---|---|---|---|
TX93-5210 | - | 12762 | 9330534 | 32258 | 2657 | 4725 | 5738 | 3307 | 4230 | 4239 |
QSMP-1570 | 74 | 3788 | 2199518 | 10204 | 620 | 1437 | 1345 | 794 | 705 | 584 |
QS8M-ND00 | 192 | 9222 | 6922571 | 24390 | 372 | 1228 | 808 | 814 | 710 | 677 |
TXRZ-G2L0 | 212 | 8853 | 6850488 | 22727 | 1095 | 2322 | 2358 | 2286 | 2363 | 2377 |
QS8M-MQ00 | 280 | 21075 | 7912644 | 27777 |
1132 |
2830 | 2570 | 2647 | 2341 | 2004 |
QSXM-MM60 | 361 | 21028 | 7912644 | 27777 | 1885 | 8533 | 4243 | 2950 | 2716 | 2301 |
QSXP-ML81 | 863 | 21104 | 7912957 | 27777 | 2008 | 10690 | 4673 | 2910 | 2617 | 2216 |